

4th INTERNATIONAL CONFERENCE ON RISK ASSESSMENT OF PHARMACEUTICALS IN THE ENVIRONMENT

Barcelona, 9 - 10 October 2023

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

<u>diana.lima@ua.pt;</u> <u>diana.lima@estesc.ipc.pt</u>

12 RESPONSIBLE CONSUMPTION AND PRODUCTION

14 LIFE BELOW WATER

CENTRE FOR ENVIRONMENTAL AND MARINE STUDIES

Research area 1

Development of alternative and low-cost methodologies for pharmaceuticals determination

in aquatic environment

Research area 2

Development of **waste-based carbon materials** to be applied as advanced wastewater treatments, for the removal of pharmaceuticals from wastewater

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

Aims of this Work

- Applying waste-based sorbents developed in our laboratory as an alternative to commercially available and costly sorbents.
- Evaluating their extraction capacity for two highly used pharmaceuticals, carbamazepine (CBZ) and sulfamethoxazole SMX.
 - Evaluating several factors that affect the extraction capacity: type and amount of sorbent, elution conditions, sample volume.
 - Evaluate water sample matrix effects on the extraction procedure.

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

METHODOLOGY:

1. Waste-based sorbents production

Two agro-industrial residues

Scheme 1. Production of waste-based sorbents

2. Solid phase extraction (SPE) and chromatographic analysis

Scheme 2. Solid phase extraction and chromatographic analysis

Evaluation of several factors:

- type and amount of sorbent
- elution conditions
- sample volume

CESAA CENTRE FOR ENVIRONMENTAL AND MARINE STUDIES

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

1. Chemical and textural characterization of the sorbents

Table 1. Specific surface area and pore morphology for AC-PPSand AC-SBG

	c	17	DF		
Sample	S _{BET} (m²/g)	v _p	W _o	L	<i>D</i> (nm)
		(cm³/g)	(cm³/g)	(nm)	
AC-PPS	1363	0.93	0.54	1.95	1.36
AC-SBG	1274	0.73	0.51	1.79	1.14

 S_{BET} : Specific surface area; V_{p} : Total pore volume; DR: Dubinin-Radushkevich; *D*: Average pore diameter; W_0 : Total micropore volume; *L*: Average micropore width; AC-PPS: Primary papermill sludge derived activated carbon; AC-SBG: Spent brewery grains derived activated carbon.

Figure 1. Scanning electron microscopy images of waste-based sorbents produced and used as sorbents in solid phase extraction at magnifications of 3000 x

Two microporous materials were obtained with remarkably **similar properties** in what concerns average pore diameter (*D*), average micropore width (*L*) and total pore volume (V_p)

The	point	of	zero	charge	(PZC)
-----	-------	----	------	--------	-------

AC-PPS ~ 6.1

AC-SBG ~ 5.4

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

2. Evaluation of the pre-concentration procedure

2.1. Type and amount of sorbent

Figure 2. Extraction recovery for (a) carbamazepine (1000 μ g/L) and (b) sulfamethoxazole (100 μ g/L), using different mass of AC-PPS and different eluents (n=3). Volume of eluent used: 5 + 5 mL and 10 min of contact time. Volume of standards loaded: 100 mL.

Figure 3. Extraction recovery for sulfamethoxazole (100 μ g/L), using different mass of AC-SBG and different eluents (n=3). Volume of eluent used: 5 + 5 mL and 10 min of contact time. Volume of standards loaded: 100 mL.

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

2. Evaluation of the pre-concentration procedure

2.2. Elution Conditions

Figure 4. Eluent volume effect on the recovery of carbamazepine (CBZ) and sulfamethoxazole (SMX) using cartridges containing 25 mg of AC-PPS and 25 mg of AC-SBG, respectively (n=3). Eluent: Acetone; Contact time: 10 minutes

2.3. Sample Volume

Table 2. Recovery results obtained for carbamazepine (CBZ) and sulfamethoxazole (SMX) using different sample volumes and different concentrations (n=3).

		Sample Vol	ume = 1 L	Sample Volume = 100 mL		
	Concentration (µg/L)	Loaded mass (µg)	Recovery rate (%)	Loaded mass (µg)	Recovery rate (%)	
CBZ	1000	1000	65 ± 5	100	92 ± 1	
	100	100	90 ± 1	n.d.	n.d.	
SMX	100	100	51±3	10	51 ± 2	
	10	10	47 ± 5	n.d.	n.d.	

Results indicated that a volume of 1 L can be used maintaining high recoveries for a loaded mass lower than 100 μ g.

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

3. Evaluation of the SPE-HPLC optimized method

3.1. Analytical performance

Scheme 2. Solid phase extraction and chromatographic analysis

Conditions for the calibration curves:

- 25 mg of sorbent (AC-PPS for CBZ and AC-SBG for SMX)
- **\Leftrightarrow Conditioning** with 10 mL of H₂O
- Loading: Standards/Samples (1 L) in triplicate
- Elution with acetone (2 x 5 mL, each fraction ketp inside the cartridge for 10 min)
- Analysis by HPLC

ESAA CENTRE FOR ENVIRONMENTAL AND MARINE STUDIES CENTRE FOR ENVIRONMENTAL AND ENVIRONMENTAL ENVIRONMENTAL Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

3. Evaluation of the SPE-HPLC optimized method

3.1. Analytical performance

Table 3. Quantitative parameters for analytical curves obtained by SPE–HPLC.

Analyte	Linear range (µg/L)	Correlation Coefficient (r)	Linearity (%)	Limit of detection (µg/L)	Extraction Recovery (%)	Enrichment factor ^c
CBZ	1-10	0.9768	95.5	0.69		
	10-250	0.9988	99.1	3.5	90 ± 1ª	90 ± 1
SMX	0.05-1	0.9999	99.1	0.015		
	0.1-25	0.9995	97.4	0.94	47 ± 5 ^b	47 ± 5

^aValues obtained for a 100 μ g/L concentration (n=3). ^bValues obtained for a 10 μ g/L concentration (n=3)

^cMean value \pm standard deviation (n=3).

universidade de aveiro Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

3. Evaluation of the SPE-HPLC optimized method

3.2. Matrix effects

Table 4. Average recoveries of carbamazepine (CBZ) and sulfamethoxazole (SMX) in river and effluent water solutions of 1 L with different levels of spike with the pharmaceutical (n=3)

Analyte	Level of spike	Recovery Recovery in		
	(µg/L)	in river 🚺	🌈 effluent 🚫	
		water (%)	water (%)	
CBZ	10 ^a	71±6	45 ± 10	
	100 ^b	81±3	20 ± 0	
	250 ^b	85 ± 4	12 ± 4	
SMX	1 ^c	92 ± 3	19 ± 1	
	10 ^d	99 ± 9	14 ± 2	
	25 ^d	115 ± 3	6 ± 2	

^aCalculated using the calibration curve with concentrations ranging from 1-10 μ g/L; ^bCalculated using the calibration curve with concentrations ranging from 10-250 μ g/L; ^cCalculated using the calibration curve with concentrations ranging from 0.05-1 μ g/L; ^dCalculated using the calibration curve with concentrations ranging from 0.1-25 μ g/L.

CESAA CENTRE FOR ENVIRONMENTAL AND MARINE STUDIES

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

CONCLUSIONS

- Two microporous carbonaceous sorbents, derived from waste materials (SBG and PPS) were successfully produced through chemical activation and pyrolysis
- Using 25 mg of the AC-PPS for CBZ and 25 mg of the AC-SBG for SMX as SPE sorbent, recoveries of
- 92 \pm 3 % for CBZ and 51 \pm 2 % for SMX in ultrapure water were achieved under optimal conditions

(elution using 5 mL + 5 mL of acetone and a contact time of 10 min)

- The SPE procedure coupled to HPLC allowed to reach a LOD of 0.69 μ g/L for CBZ and of 0.015 μ g/L for SMX

- Finally, the recovery efficiency in river water was maintained for both pharmaceuticals for a wide range of concentrations, however for wastewater it decreased significantly, due to pH implications for SMX, and high DOC values for both SMX and CBZ

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

CONCLUSIONS

A reliable pre-concentration and sample clean-up methodology based on the use of biomass-based sorbents was successfully developed and suitable for the analysis of the target pharmaceuticals in surface water samples

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices

Thank you for your attention!!

diana.lima@ua.pt; diana.lima@estesc.ipc.pt

Cofinanciado por:

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional

UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020

Solid phase extraction using waste-based sorbents for the determination of pharmaceuticals in water matrices