

Advances on biomass-derived microporous carbons for efficient removal of pharmaceuticals from wastewater

Vânia Calisto*

Érika Sousa, Diogo Pereira, Diana Lima, María V. Gil, Marta Otero, & Valdemar Esteves

*vania.calisto@ua.pt

October 10, 2023, Barcelona

fct Fundação para a Ciência REPÚBLICA PORTUGUESA CESAA

CENTRE FOR ENVIRONMENTAL AND

MARINE STUDIES

 $\mathbf{O}\mathbf{O}$

iniversidade de aveiro

departamento de química

Image credits: José Manuel Pereira

Contextualization

Present Treatment Levels of STP

Chemicals released by Sewage Treatment Plants (STP) are identified as one of the **main pressures on surface water**, with **pharmaceuticals** being amongst the most representative.

Pharmaceutical emissions can be strongly reduced by STP, ranging from an average of **9 % for STP with primary treatment** to **84 % for STP with advanced treatment**!

Activated carbon (AC) is one of the best performing advanced options... why?

Activated Carbon

High specific surface area

 (S_{BET})

Microporous amorphous carbonaceous structure

Surface functional groups

Possible surface functionalization

Excellent features for advanced wastewater treatment

Lower performance for trace contaminants

Difficult separation from treated water (implications on costs and reutilization)

Limited sustainability due to

fossil-based nature or heavy

synthesis routes and difficult regeneration

Our Motivation

Efficient and cost-effective

wastewater treatments are a

must-have tool for ensuring

TREATMENTS SUSTAINABILITY & WATER SAFETY AND CIRCULARITY

Our Main Goal

Developing biomass-based (functionalized) activated carbons to be applied as advanced wastewater treatments, for the removal of pharmaceuticals from wastewater, using:

Paper mill sludge

Spent brewery grains or 2

Experimental approach

Case Study 1 - Multivariable optimization of brewery-waste AC

Main goal: Obtain an AC from spent brewery grains using a **quick microwave pyrolysis** process with **minimal use of activating chemicals** comparing to literature studies and high adsorptive performance towards antibiotics

Case Study 1 - Multivariable optimization of brewery-waste AC

Highly microporous AC were obtained with S_{BET} up to 1400 m² g⁻¹, with excellent removal of antibiotics from water using very low AC doses – **5 x less activating agent and 8 x faster than conventional pyrolysis**

Case Study 2 – Multivariable optimization of magnetic AC

Main goal: Obtain a magnetic AC (MAC) with minimal losses in performance comparing to the non-magnetic material and easily retrievable from the treated water

Case Study 2 – Multivariable optimization of magnetic AC

Responses

Removal of selected pharmaceuticals | R (%)* Amoxicillin (AMX) | Carbamazepine (CBZ) | Diclofenac (DCF)

*Batch adsorption studies

- + MAC dosage: 35 mg L⁻¹
- + [Pharmaceutical]_i = 15 µmol L⁻¹

+ 4 h, 80 rpm, 25 °C

Overview of selected developed microporous carbons

Specific surface area (S_{BET})

 S_{BET} (m²/g)

+ Residual biomass is a valid resource to produce efficient carbon adsorbents capable to compete in performance with commercial carbons

+ Microwave-assisted pyrolysis can be successfully used in the production of microporous carbons using significantly lower amounts of chemical activating agents and in just a few minutes!

+ Biomass-derived AC modified with **magnetic iron oxides allow for immediate recuperation** from the treated water, still maintaining excellent adsorptive properties.

+ It is possible to take advantage of the tunable surface of activated carbon: **grafting**, **molecular-imprinting and enzyme modifications are being studied** to understand the impact of such modifications on the AC performance in complex matrices

Research Team & Collaborators

Vânia Calisto Diana Lima vania.calisto@ua.pt

Goreti Pereira

Ângela Almeida

Valdemar Esteves

Marta Otero

Valentina Silva

Érika Sousa

Diogo Pereira

Hugo Rocha

Joana Fernandes

Paula Ferreira

Nuno Silva

Follow us on Linkedin in asaec research group

María Victoria Gil

Special thanks to: SYNERGY Project (https://doi.org/10.54499/2022.02028.PTDC)

CENTRE FOR ENVIRONMENTAL AND MARINE STUDIES

