# Aquasearch: a new software for fast proteomic characterization and classification of wastewater samples analyzed using MALDI-TOF.

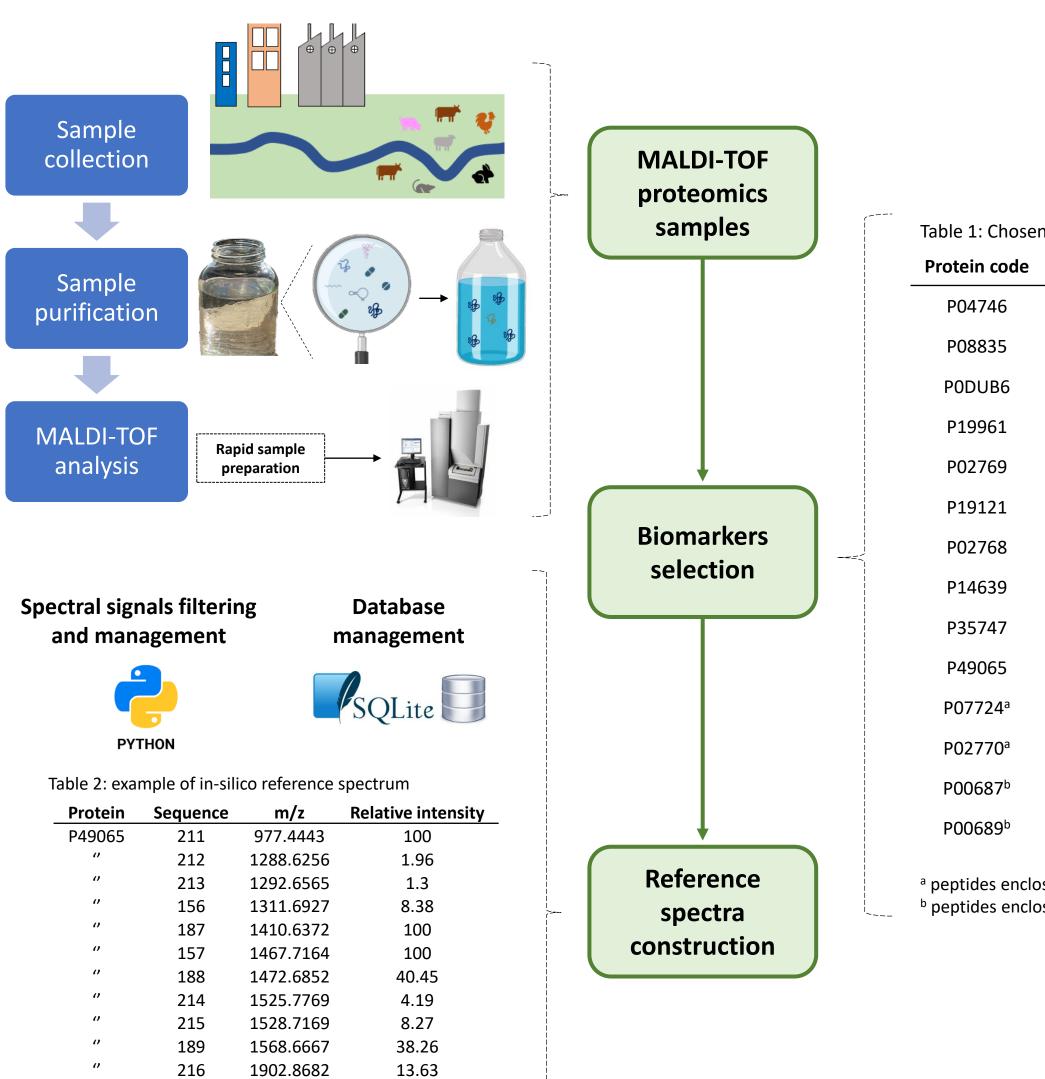
<u>Carlos Pérez-López (1)</u>, Antoni Ginebreda (1), Joaquín Abian (2), Damiá Barcelò (1), Montserrat Carrascal (2)

<sup>(1)</sup> Institute of Environmental Assessment and Water Studies (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona 18–26, 08034 Barcelona, Spain <sup>(2)</sup> Biological and Environmental Proteomics, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), Rosellón 161, E-08036 Barcelona, Spain

Email: carlos.perezlopez@cid.csic.es

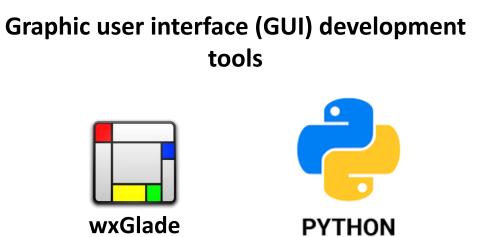
## INTRODUCTION

Traditionally, the study of wastewater has been focused on small molecules such as pharmaceuticals, illegal drugs or pesticides among others. However, recent studies have highlighted the valuable information provided by large molecules (proteins) present in wastewater [1, 2, 3], regarding the health and lifestyle of the population served by the system. Chromatographic techniques usually employed in shotgun proteomics obtains comprehensive information can be expensive and time-consuming. Therefore, Matrix-Assisted Laser Desorption/Ionization coupled with Time of Flight (MALDI-TOF) is proposed as a high-throughput instrumental approach for faster and more cost-effective sample characterization. In this work, we present Aquasearch, a newly developed software for a rapid characterization and classification of **proteomics in wastewater samples** analyzed with MALDI-TOF.




#### **OBJECTIVES**

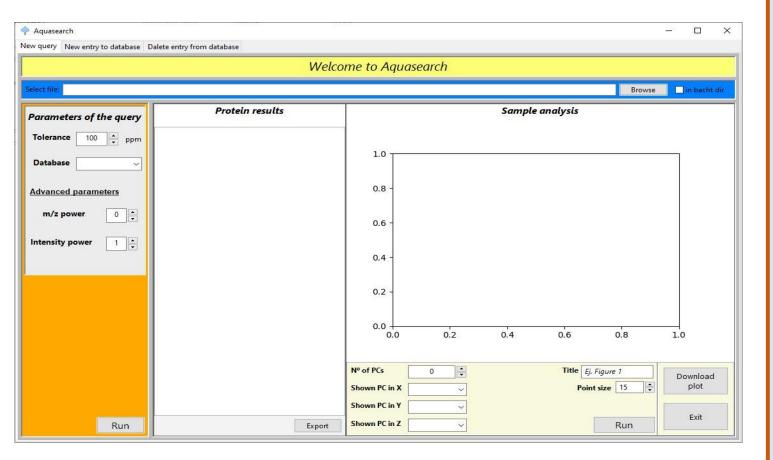
- Construction of an in-house database with the peptides characteristics of each biomarker
- Development of matching and scoring systems to assess the presence or absence of a biomarker and the classification of the samples
- Complete an accurate pipeline for rapid characterization of proteomics in wastewater samples


METHODOLOGY

#### **Database construction**



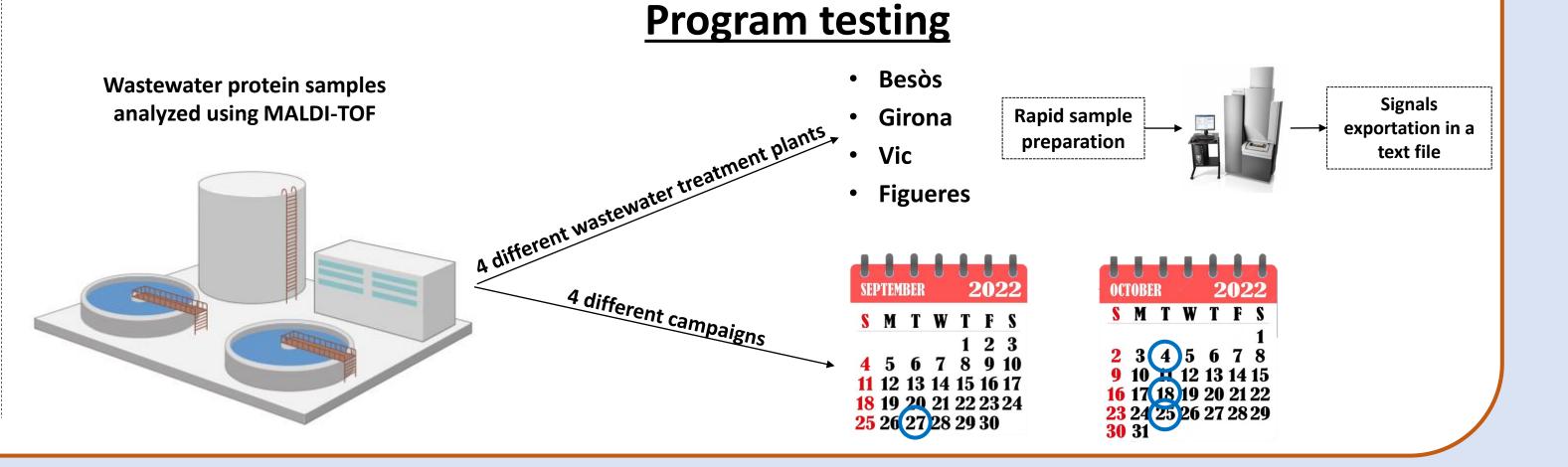
| Protein code        | Protein name                                                      | Organism              |
|---------------------|-------------------------------------------------------------------|-----------------------|
| P04746              | Pancreatic alpha-amylase                                          | Homo sapiens          |
| P08835              | Albumin                                                           | Sus scrofa            |
| PODUB6              | Alpha-amylase 1A                                                  | Homo sapiens          |
| P19961              | Alpha amylase 2B                                                  | Homo sapiens          |
| P02769              | Albumin                                                           | Bos taurus            |
| P19121              | Albumin                                                           | Gallus gallus         |
| P02768              | Albumin                                                           | Homo sapiens          |
| P14639              | Albumin                                                           | Ovis aries            |
| P35747              | Albumin                                                           | Equus caballus        |
| P49065              | Albumin                                                           | Oryctolagus cuniculus |
| P07724 <sup>a</sup> | Albumin                                                           | Mus musculus          |
| P02770 <sup>a</sup> | Albumin                                                           | Rattus norvegicus     |
| P00687 <sup>b</sup> | Alpha-amylase 1                                                   | Mus musculus          |
| P00689 <sup>b</sup> | Pancreatic alpha-amylase                                          | Rattus norvegicus     |
|                     | osed in 'Murid albumin (P07724<br>osed in 'Murid pancreatic (P006 |                       |


## **Application development**



#### **Application functions**

- Characterize new samples.
- Classify samples depending on their proteomic profile (in the case of a multisampling study).
- Add or delete spectral-examples to the database.
- Add or delete biomarkers from database.


A)



#### **Application Output**

Score of the presence of the biomarker in the sample.

- Total number and sequences of the peptides identified for each biomarker (including the number of unique peptides).
- PCA resulting from the proteomics profile of the samples (in the case of a multisampling study).



| 0 | 190 | 2058.9517 | 67.61 |  |
|---|-----|-----------|-------|--|
| 0 | 82  | 2113.8494 | 13.78 |  |
| 0 | 83  | 2247.9231 | 19.76 |  |
| 0 | 191 | 2315.0488 | 33.33 |  |
| 0 | 62  | 2612.0861 | 97.27 |  |
|   |     |           |       |  |

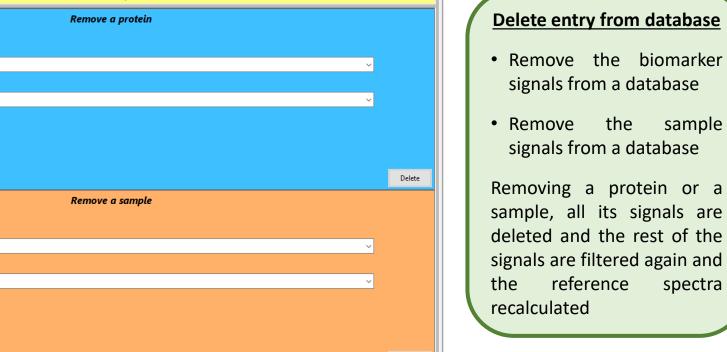
## RESULTS

### **Database construction**

#### **Database summarize:**

- Samples used to build database: 30 mix samples + 18 standard samples of some proteins (P08835, P19121, P02768, P49065, P07724, P02770).
- Total number of m/z signals identified in the samples: **1825**.
- Total number of different peptides: **229.**
- Number of unique peptides among the total identified peptides: 85.

#### Table 3: number of peptides (and unique peptides) in reference spectrum for each biomarker

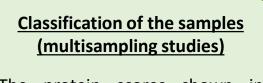

Protein code Nº Peptides Nº unique peptides

| P04746              | 39 | 4  |
|---------------------|----|----|
| P08835              | 51 | 23 |
| PODUB6              | 43 | 3  |
| P19961              | 41 | 0  |
| P02769              | 40 | 8  |
| P19121              | 35 | 22 |
| P02768              | 35 | 7  |
| P14639              | 19 | 0  |
| P35747              | 6  | 1  |
| P49065              | 16 | 8  |
| P07724 <sup>a</sup> | 19 | 8  |
| P02770 <sup>a</sup> | -  | -  |
| P00687 <sup>b</sup> | 11 | 1  |
| P00689 <sup>b</sup> | -  | -  |
|                     |    |    |

#### – 🗆 X New query New entry to database Dalete entry from database Welcome to Aquasearch protein per label 2 proteins per label New entry to database Mixture of protein tandard protei Mixture file from Browse Mixture file from MALDI-TOF (txt) • Depending on the Browse MALDI-TOF (txt) number of proteins: Peptide data form Browse 1 Protein per label Protein data form Protec Discoverer (xlsx) 100 📮 Uniprot code: 2 Protein per label 100 🚔 🛛 Unique peptides Sample name • Depending of the sample Uniprot code: all inividual protein nature: Sample name Protein rank Mix of proteins > Standard Run Run - 🗆 X Aquasearcl New guery New entry to database Dalete entry from database Welcome to Aquasearch **Delete entry from database** Remove a proteir Remove the biomarker signals from a database Remove the sample

**Application development** 

🔷 Aquasearch




|  | Pro | gram | testing |
|--|-----|------|---------|
|--|-----|------|---------|

| P04746         Panc           P08835         Albu           P0DUB6         Alph | umin                     | Results of samp<br>Organism<br>Homo sapiens | Score | N° of peptides |                 |   | Peptides of p       | orotein I | P04746    |
|---------------------------------------------------------------------------------|--------------------------|---------------------------------------------|-------|----------------|-----------------|---|---------------------|-----------|-----------|
| P04746         Panc           P08835         Albu           P0DUB6         Alph | creatic alpha-am<br>umin | Homo sapiens                                |       | N° of peptides | 1               |   |                     |           |           |
| P08835 Albu<br>P0DUB6 Alph                                                      | umin                     |                                             |       |                | Unique peptides | 1 | Peptide             | Unique    | Error (pp |
| P08835 Albu<br>P0DUB6 Alph                                                      | umin                     |                                             | 20.77 | 23             | 3               |   | SGNEDEFR            | No        | 68.3      |
|                                                                                 | 1 14                     | Sus scrofa                                  | 8.9   | 6              | 1               |   | SSDYFGNGR           | No        | 43.6      |
|                                                                                 | ha-amylase 1A            | Homo sapiens                                | 9.38  | 21             | 0               |   | TSIVHLFEWR          | No        | 55.7      |
| P19961 Alph                                                                     |                          | Homo sapiens                                | 9.8   | 23             | 0               |   | WVDIALEcER          | No        | 51.1      |
|                                                                                 |                          | Bos taurus                                  | 5.66  | 7              | 0               |   | ALVFVDNHDNQR        | No        | 56.3      |
| P19121 Albu                                                                     | umin                     | Gallus gallus                               | 13.86 | 4              | 2               |   | NWGEGWGFVPSDR       | Yes       | 58.2      |
| P02768 Albu                                                                     | umin                     | Homo sapiens                                | 9.78  | 9              | 1               |   | SGNEDEFRNMVTR       | No        | 21.5      |
| P14639 Albu                                                                     | umin                     | Ovis aries                                  | 4.0   | 3              | 0               |   | SGNEDEFRNmVTR       | No        | 18.8      |
| P35747 Albu                                                                     | umin                     | Equus caballus                              | 2.83  | 1              | 0               |   | GHGAGGASILTFWDAR    | No        | 53.2      |
| P49065 Albu                                                                     | umin                     | Oryctolagus cuniculus                       | 7.21  | 3              | 1               |   | MAVGFMLAHPYGFTR     | No        | 43.8      |
| Murid_albumin_(                                                                 |                          | -                                           | 12.24 | 3              | 2               |   | LTGLLDLALEKDYVR     | Yes       | 47.6      |
| Murid pancreatic                                                                |                          | -                                           | 5.66  | 7              | 0               |   | mAVGFmLAHPYGFTR     | No        | 42.4      |
| _                                                                               |                          |                                             |       |                |                 |   | TGSGDIENYNDATQVR    | No        | 43.6      |
|                                                                                 |                          |                                             |       |                |                 |   | DFPAVPYSGWDFNDGK    | No        | 22.3      |
|                                                                                 |                          |                                             |       |                |                 |   | IAEYMNHLIDIGVAGFR   | No        | 55.9      |
|                                                                                 |                          |                                             |       |                |                 |   | IAEYmNHLIDIGVAGFR   | No        | 46.5      |
|                                                                                 |                          |                                             |       |                |                 |   | EVTINPDTTcGNDWVcEHR | No        | 34.9      |
|                                                                                 |                          |                                             |       |                |                 |   | QFQNGNDVNDWVGPPN    | No        | 36.7      |
|                                                                                 |                          |                                             |       |                |                 |   | NVVDGQPFTNWYDNGS    | No        | 44.6      |
|                                                                                 |                          |                                             |       |                |                 |   | GFGGVQVSPPNENVAIYN  | Yes       | 43.7      |
|                                                                                 |                          |                                             |       |                |                 |   | mAVGFMLAHPYGFTR     | No        | 43.6      |
|                                                                                 |                          |                                             |       |                |                 |   | LYKmAVGFmLAHPYGFTR  | No        | 31.3      |
|                                                                                 |                          |                                             |       |                |                 |   | DcRLTGLLDLALEKDYVR  | No        | 59.2      |
| Export                                                                          |                          |                                             |       |                | Close           |   | Close               |           |           |

| × | Example of identification                                                                                                              |
|---|----------------------------------------------------------------------------------------------------------------------------------------|
|   | Rsults of the sample from the<br>Besos River (NE Spain) firstly                                                                        |
|   | collected (B1) are depicted.                                                                                                           |
|   | The Score indicates:                                                                                                                   |
|   | <ul> <li><u>Score &gt; 4</u>: Unlikely presence<br/>of the protein</li> </ul>                                                          |
|   | <ul> <li><u>4 &lt; Score &gt; 5</u>: The presence<br/>of the protein is probable<br/>(decide with the other<br/>parameters)</li> </ul> |
|   | <ul> <li><u>Score &gt; 5</u>: The protein is in<br/>the sample</li> </ul>                                                              |





The protein scores shown in above image are used to carry out a Principal Component Analysis (PCA) [4]. As a result of the analysis of the 16 samples (4 samples from 4 wastewater treatment plant), 3 well defined groups are obtained: 1. <u>Urban areas</u> (Besos and Girona) 2. <u>Poultry activity area (Figueres)</u>

3. <u>Pork activity area (Vic)</u>



completely unsupervised

#### CONCLUSIONS

- ✓ The MALDI-TOF analytical technique has a huge potential for a rapid characterization of proteomics in wastewater samples, previous to a more comprehensive analysis with a more expensive and time consuming techniques such as LC-HRMS.
- ✓ The Aquaserch software has built a representative in-house database with some of the biomarkers associated with the presence of animal and human activity to characterize and classify the samples depending on these biomarkers.
- ✓ The score punctuation reported by Aquaserch for each biomarker can identify accurately the presence or absence of the studied biomarkers in the samples and classify them in a multisampling study.
- ✓ Aquasearch is the unique proteomic screening application tested in real wastewater samples. Aquasearch enables to effectively identify protein contaminations in a rapid and high-throughput way.

# ACKNOWLEDGEMENTS

Carlos Pérez-López acknowledges the predoctoral scholarship FPI 2019–090182 included in the Grant CEX2018-000794-S funded by MCIN/AEI/10.13039/ 501100011033. This work has been financially supported by the Spanish Ministry of Science and Innovation (Project CEX2018-000794-S and PID2020-114065RB-C22 /MCIN/AEI /10.13039/501100011033; WaterPROT).

- 1. M. Carrascal et al. (2020) Discovery of large molecules as new biomarkers in wastewater using environmental proteomics and suitable polymer probes. Sci. Total Environ., 747 Article 141145.
- 2. C. Perez-Lopez et al. (2021) Non-target protein analysis of samples from wastewater treatment plants using the regions of interest-multivariate curve resolution (ROIMCR) chemometrics method. J. Environ. Chem. Eng. Volume 9, Issue 4, August, 105752.
- 3. M.Carrascal et al. (2023) SewageProteinInformationMining:Discoveryof Large Biomoleculesas Biomarkersof Populationand IndustrialActivities. Environ. Sci. Technol. 2023, 57, 30, 10929–10939.
- 4. S. Wold, K. Esbensen, and P. Geladi, 'Principal component analysis', Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1–3, pp. 37–52, 1987

#### REFERENCES