

ICRAPHE

Barcelona, 9-10 October 2023

RECLAIMED WASTEWATER: TREATMENTS AND RISK ASSESSMENT

Paola Verlicchi, PhD University of Ferrara, Italy

Barcelona, October 10 2023

Main issues addressed

Journal of Hazardous Materials Volume 416, 15 August 2021, 126184

Pharmaceuticals in edible crops irrigated with reclaimed wastewater: Evidence from a large survey in Israel

Evyatar Ben Mordechay, Vered Mordehay, Jorge Tarchitzky, Benny Chefetz Զ 🔯

- ✓ Polishing treatments in reclamation facilities: CEC removal capacity
- ✓ Environmental risk residual due to CECs
- \checkmark Fate of CECs in the soil
- ✓ Fate of CECs in crops
- ✓ Human and environmental risk assessment
- ✓ Some remarks

Starting point: the release of a (municipal) WWTP

WWTP of Ferrara, Italy

WWTP in Johannesburg: secondary clarifier

WWTP release in Po River, Italy 3

An in depth analysis of the secondary effluent

Department of Engineering Ferrara

Regulated compounds in the discharged effluent fulfill their legal limits

Unregulated compounds may be still present in the discharged effluent

also: N compounds, P compounds, E. coli,...

van Gijn et al 2022; Gutierrez et al., 2021, Zietzschmann et al. 2016, Stretcher et al., 2016, Chys et al.,2017

DOC = 5-20 mg/L (much higher than the concentration of *trace* organic contaminants, namely PhCs, CECs, micropollutants MP in general)

 $UV_{254} = 25-28 \ 1/m$

Fig. 1. LC-OCD chromatograms of the WWTP effluent and the drinking water with low molecular weight acids and neutrals indicators and corresponding integration limit.

Table 1 Characterization of differently spiked drinking waters and WWTP effluents.

	Spiking level	DOC [mgC/L]	UV ₂₅₄ [1/m]	SUVA [L/ mg/m]	LMW organics concentration [mg C/L]	LMW organics UV ₂₅₄ [1/m]
drinking	low	4.9	10.6	2.2	1.1	1.9
water	med.	4.9	11.0	2,2	-	_
	high	5.0	11.8	2.4	-	-
WWTP	low	10.7	25.9	2.4	4.5	9.2
effluent	med.	10.8	26.5	2.5	_	-
	high	10.7	27.5	2.6	-	-

Risk due to PhCs in a secondary effluent

Department of Engineering

Ferrara

Treatment trains: different options

Advanced treatment

Process application evaluated case by case.

additional options by replacing "biological process" with "MBR" for treatment trains from "b" to "f" and by removing depth filtration.

Department of

Engineering

Ferrara

Slow Sand Filtration (biofiltration) of a rapid filter effluent

TrOCs	Effluent ng. L ⁻¹	SS
Alprazolam	3	n.ı
Amantadine	45	n.ı
Amitriptyline	35	46
Carbamazepine	487	n.ı
Ciprofloxacin	71	bd
Diazepam	2	n.ı
Diclofenac	506	n.ı
Flumequine	5	10
Indomethacin	48	bd
Levofloxacin	30	83
Metronidazole	24	76
Nalidixic acid	5	15
Nevirapine	8	n.ı
Paracetamol	132	51
Sulfamethoxazole	24	n.ı
Tetracycline	50	32
Trimethoprim	74	n.ı
Venlafaxine	367	n.ı

Figure 3 Physical-chemical water characteristics before and after (combined) treatment: (a) UVA₂₅₄ (m⁻¹), COD and BOD₅ (mg O₂ L⁻¹) and (b) nutrients TN, NO₃⁻-N (mg N L⁻¹) and oPO₄³-P (mg P L⁻¹). The number of samples of each characteristic is indicated on the left or right y-axis.

n.r. means removal efficiency < 10%; bdl means below detection limit (< lod)

Chrys et al.,2017

Chlorine dioxide

	Outlot fm	60 mg/1	60 mg/l			
API	MBR	15 min	120 min			
ac-sulfadiazine	80			-		
ac-sulfamethoxaz.	1,100					
Amoxicillin	<5					
Atenolol	1,500	15	16			120
Azithromycin	1,100	430	220		(0)	100
Bisoprolol	34	20	19	5	y (9	e0
Capecitabine	16				lenc	80
Carbamazepine	2,200	2,100	1,800		the	60
Cefuroxime	<25				val e	40
Ciprofloxacine	4,800	113,000	32,000		mov	20
Citalopram	750	220	210	•	Re	20
Clarithromycin	920	410	390			ي ٥
Clindamycin	130	4	3			yrin
Cyclophosphamide	19					ntip
Diclofenac	<5	1	5			A
Erythromycin	540					
Erythromycin deh.	780					
Fenofibrat	13			API	0	utlet from IBR
Furosemide	5,400			Sotalol	- 3	00
Ibuprofen	1,100			Sulfadiazine	2	3
Ifosfamide	120			Sulfamethizole	4	5
Metoprolol	1,200	1,900	1,900	Sulfamethoxazole	6	80
MTX	<2	_,	,	Tramadol	1	,200
Oxcarbazepine	<1			Trimethoprim	3	,200
Paracetamol	<1			Venlafaxin	5	50
Phenanzon	190			Amidotrizoeacid	6	5,500
Propranolol	300			Ionexoi	3	.000.000
Roxithromycin	180	28	22	Ioversol	3	30.000

Disinfection DE Department of Engineering Ferrara

UV radiation

Kim et al., 2009

Nielsen et al., 2013

Ozonation

Ozone

Concentrations [ng/L]

r9/ -1	Construct from the	82 mg O ₃ /l	156 mg O ₃ /l
API	MBR	10 min	20 min
ac-sulfadiazine	80	<5	<5
ac-sulfamethoxaz.	1,100	780	67
Amoxicillin	<5	<5	<5
Atenolol	1,500	<10	<10
Azithromycin	1,100	<5	<5
Bisoprolol	34	7.9	6.3
Capecitabine	16		<10
Carbamazepine	2,200	<5	<5
Cefuroxime	<25	<25	<25
Ciprofloxacine	4,800	650	250
Citalopram	750	45	27
Clarithromycin	920	51	12
Clindamycin	130	16	<5
Cyclophosphamide	19	9.7	<5
Diclofenac	<5	51	<5
Erythromycin	540	<20	<20
Erythromycin deh.	780	<20	<20
Fenofibrat	13	<12.5	<12.5
Furosemide	5,400	<25	<25
Ibuprofen	1,100	190	12
Ifosfamide	120	35	8.6
Metoprolol	1,200	31	17
MTX	<2	<2	<2
Oxcarbazepine	<1	<1	<1
Paracetamol	<1	<1	<1
Phenanzon	190	<10	<10
Propranolol	300	<2	<2
Roxithromycin	180	16	7.9

Swiss Regulation (Micropoll strategy): suggested activated carbon and ozonation for large WWTPs; requested 80% removal for a selection of OMPs (among those listed in the act).

Removal achieved at Neugut WWTP, Switzerland (150 000 PE). **Ozonation**. Investigation on **550 MPs**

Nielsen et al., 2013 WST

Bourgin et al., 2018 Water Research⁹

Too many compounds to look after. Removal of a subgroup under different ozone dosages (HRT 43 min)

Department ofEngineering

	0.35 ± 0.02	2 g O ₃ /g DO	C	0.54 ± 0.05	g O ₃ /g DO	C	0.67 ± 0.03	g O ₃ /g D	OC	0.97 ± 0.07 g O ₃ /g DOC			rrara
	BIO	OZO	BIO + OZO	BIO	0Z0	BIO + OZO	BIO	0Z0	BIO + OZO	BIO	0Z0	BIO + OZO	_
Acesulfame	95 ± 1	39 ± 5	97 ± 1	90 ± 8	59 ± 9	96 ± 3	95 ± 1	70 ± 8	98 ± 1	88 ± 5	$>90 \pm 4$	>99±1	
Aliskiren	25 ± 4	$>84 \pm 1$	>88 ± 1	23 ± 22	$>93 \pm 1$	$>95 \pm 1$	7 ± 12	$>81 \pm 1$	$>82 \pm 3$	8 ± 11	$>92 \pm 3$	>93 ± 2	Subgroup of 12
Amisulpride ^e	2 ± 14	91 ± 1	91 ± 2	3 ± 16	$>98 \pm 1$	$>98 \pm 1$	-1 ± 13	$>95 \pm 1$	>95 ± 1	3 ± 8	$>98 \pm 1$	>98 ± 1	Subgroup of 45
Atenolol	75 ± 3	70 ± 2	92 ± 1	70 ± 5	92 ± 3	98 ± 1	72 ± 5	93 ± 5	98 ± 1	71 ± 4	$>93 \pm 1$	>98 ± 1	
Atenolol acid	76 ± 2	70 ± 3	93 ± 1	72 ± 3	91 ± 3	98 ± 1	67 ± 4	$>92 \pm 4$	>97 ± 1	69 ± 3	$>98 \pm 1$	>99±1	UNIPS
Azithromycin	8 ± 28	$>90 \pm 1$	$>90 \pm 3$	n.m.2	$>54 \pm 3$	n.m.	25 ± 14	$>88 \pm 2$	$>91 \pm 3$	23 ± 15	$>95 \pm 1$	>96 ± 1	and among these
Benzotriazole ^e	66 ± 3	52 ± 1	83 ± 1	62 ± 7	74 ± 3	90 ± 3	63 ± 6	80 ± 7	93 ± 2	64 ± 3	91 ± 4	97 ± 1	and among these
Bezafibrate	96 ± 1	$>62 \pm 5$	$>98 \pm 1$	$>95 \pm 2$	>75 ± 1	>99 ± 1	$>93 \pm 2$	n.m.1	>97 ± 1	$>94 \pm 1$	>24 ^d	>97 ± 2	a subgroup of 12
Candesartan ^e	0 ± 16	63 ± 1	63 ± 6	1 ± 12	82 ± 3	82 ± 5	-24 ± 20	85 ± 6	81 ± 6	-17 ± 19	94 ± 3	93 ± 3	
Carbamazepine ^e	-16 ± 12	95 ± 1	94 ± 1	-14 ± 19	>98 ± 1	>98 ± 1	-33 ± 23	>98 ± 1	>98 ± 1	-24 ± 8	$>98 \pm 1$	>98 ± 1	non-easily
Carbendazim	8 ± 18	82 ± 2	83 ± 5	-1 ± 23	$>94 \pm 3$	$>94 \pm 4$	$7 \pm 16^{\circ}$	$>93 \pm 5$	$>89 \pm 8^{\circ}$	-28 ± 50	$>89 \pm 4$	>86±9	non cashy
Cetirizine	6 ± 12	92 ± 1	92 ± 2	-9 ± 12	$>93 \pm 1$	$>92 \pm 1$	-25 ± 25	$>95 \pm 1$	$>94 \pm 1$	-19 ± 10	$>95 \pm 1$	$>94 \pm 1$	degradable (in
Citalopram ^e	$5 \pm 4^{\circ}$	91 ± 3	89 ± 4^{c}	4 ± 4	$>96 \pm 3$	>96 ± 3	-8 ± 2	$>94 \pm 1$	>93 ± 1	4 ± 8	>97 ± 1	>97 ± 1	
Clarithromycin ^e	51 ± 2	93 ± 2	97 ± 1	28 ± 19	$>95 \pm 1$	$>96 \pm 1$	45 ± 6	$>94 \pm 1$	>97 ± 1	52 ± 8	>97 ± 1	>99±1	bold)
DEET	96 ± 1	49 ± 9	98 ± 1	$>90 \pm 3$	65 ± 1	$>95 \pm 2$	97 ± 1	52 ± 18	99 ± 1	97 ± 1	70 ± 15	99 ± 1	,
Diclofenac	22 ± 8	96 ± 1	97 ± 1	23 ± 8	100 ± 1	100 ± 1	11 ± 10	$>99 \pm 1$	$>99 \pm 1$	13 ± 18	$>99 \pm 1$	100 ± 1	
Diuron	0 + 30	64 + 2	64 + 10	-7 + 7	>84 + 8	>83 + 10	-5 + 14	>84 + 6	>84 + 4	$-40 + 72^{\circ}$	>90 + 6	$>79 + 20^{\circ}$	
Eprosartan	98 + 1	>66 + 3	>99 + 1	>93 + 2	n.m.1	>97 + 1	>97 + 1	>67 + 7	>99 + 1	>88 + 5	n.m.1	>94 + 3	
Fexofenadine	13 ± 16	83 + 3	85 + 6	9 + 4	>94 + 1	>95 + 1	12 + 12	>96 + 3	>97 + 2	-1 + 12	>91 + 1	>91 + 2	
Gabapentin	44 + 10	44 + 4	69 + 6	43 + 6	55 + 4	75 + 1	37 + 5	63 + 10	77 + 6	44 + 5	75 + 6	86 + 3	
Hydrochlorothiazide ^e	9 ± 13	86 ± 2	87 ± 4	13 ± 9	$>98 \pm 2$	$>98 \pm 2$	-2 ± 17	>97 ± 3	$>97 \pm 2$	1 ± 10	>99 ± 1	$>99 \pm 1$	
lopromide	72 ± 5	28 + 1	80 ± 4	70 ± 8	43 + 3	83 + 5	53 ± 20	53 + 6	78 + 8	$64 + 8^{\circ}$	65 ± 1^{c}	$88 + 3^{\circ}$	
Irbesartan ^e	17 ± 18	57 ± 1	64 ± 8	15 ± 15	75 ± 3	78 ± 5	2 ± 20	79 ± 4	79 ± 6	0 ± 25	89 ± 4	89 ± 1	
Lamotrigine	-125 ± 31	37 ± 1	-42 ± 18	-128 ± 10	50 ± 2	-15 ± 4	-140 ± 30	57 ± 7	-3 ± 21	-132 ± 5	71 ± 6	32 ± 13	
Levetiracetam	99 ± 1	>66 ± 34	100 ± 1	98 ± 1	$>43 \pm 36$	$>99 \pm 1$	$>99 \pm 1$	n.m.1	100 ± 1	$>99 \pm 1$	n.m.1	100 ± 1	
Losartan	71 ± 2	93 ± 1	98 ± 1	68 ± 5	$>98 \pm 1$	$>99 \pm 1$	66 ± 5	>98 ± 1	$>99 \pm 1$	67 ± 4	$>98 \pm 1$	$>99 \pm 1$	
Mecoprop	-5 ± 2^{c}	59 ± 2	56 ± 1^{c}	14 ± 7^{c}	77 ± 2	$81 \pm 4^{\circ}$	5 ± 30	82 ± 7	84 ± 5	$9 \pm 14^{\circ}$	$>91 \pm 3$	91 ± 1^{c}	
Metoprolol	41 + 7	75 + 2	85 + 3	38 + 5	94 + 3	96 + 2	37 + 8	94 + 5	96 + 3	38 + 4	>99 + 1	>99 + 1	
Methylbenzotriazole ^{a,e}	45 + 22	66 + 3	81 + 9	61 + 4	89 + 4	96 + 2	2 + 22	90 + 1	90 + 7	28 + 12	98 + 1	99 + 1	
N4-Acetyl-Sulfamethoxazole	>98 + 1	n.m.1	>99 + 1	>98 + 1	n.m.1	>99 + 1	>98 + 1	n.m.	>99 + 1	>95 + 2	n.m.1	>97 + 1	
Oxazepam	5 + 17	55 + 1	57 + 7	10 + 10	73 + 3	75 + 5	-13 ± 22	77 + 5	74 + 6	-10 ± 9	88 + 4	87 + 3	
Phenazone	n.m.2	$>91 \pm 1$	n.m.1	n.m.2	$>92 \pm 1$	n.m.1	n.m.2	$>92 \pm 1$	n.m.1	n.m.2	$>81 \pm 4$	n.m.1	
Primidone	19 + 12	48 + 3	58 + 5	15 + 17	66 + 1	72 + 6	14 + 14	70 + 10	75 + 7	-4 + 8	86 + 5	86 + 5	
Ranitidine	82 + 1	>74 + 2	>95 + 1	79 + 4	>80 + 4	>96 + 1	66 + 16	>71+2	>90 + 5	77 + 2	>53 + 19	>89+6	
Sucralose	9 + 20	21 + 2	28 + 14	13 + 13	27 + 1	36 + 10	-9 + 17	38 + 4	32 + 12	-4 ± 13	46 + 4	44 + 6	
Sulfamethoxazole	55 + 3	85 + 2	93 ± 1	46 + 6	>97 + 1	>98 + 1	31 + 6	>97 + 1	>98 + 1	34 + 2	>95 + 3	>96 + 2	
Telmisartan	15 ± 3	66 + 1	71 ± 1	3 + 16	86 + 3	86 + 4	-24 + 27	88 + 5	84 + 8	-7 ± 18	>94 + 1	>94 + 1	
Tramadol ^b	0 + 11	91 + 1	90 ± 3	2 + 7	98 ± 1	98 ± 1	-5 + 11	>98 + 1	>98 + 1	-6 ± 10	>98 + 1	$>98 \pm 1$	
Triclosan	n.m.1	n.m.1	n.m.1	nm1	n.m.1	n.m.1	nm1	>56 + 1	n.m.1	n.m.1	n.m.1	n.m.1	
Trimethoprim	>89 + 4	>59 + 6	>95 + 1	85 + 6	>61 + 15	>95 + 1	75 + 6	>58 + 4	>90 + 1	83 + 3	>79 + 3	>97 + 1	
Valsartan	94 + 1	52 + 3	97 ± 1	93 ± 2	69 + 3	98 ± 1	96 ± 1	68 + 8	99 + 1	93 + 1	>86 + 3	>99 + 1	
Valsartan acid	n.m.2	49 ± 1	n.m.1	nm2	67 ± 1	n.m.1	nm2	71 + 5	n.m.1	n.m.2	76 + 8	nm1	
Venlafaxine ^e	4+15	84 + 2	84 + 5	9+10	>97 + 2	>97 + 2	-12 + 17	>96 + 3	>96 + 2	1+5	>96 + 1	>96 + 1	
Average of the 12	17 + 8	79 + 1	85 + 3	20 + 7	>91 + 2	>94 + 2	7+8	>92 + 3	>93 + 2	14 + 9	$>96 \pm 1$	$>97 \pm 1$	
indicator substances ^e	17 ± 0	10 2 1	00 <u>-</u> 0	20 1 /	201 <u>T</u> 2	20112	. 10	702 <u>T</u> J	200 <u>T</u> 2	.4 ± 5	200 <u>T</u> 1	201 1	10

Bourgin et al., 2018 Water Research

Some considerations...

To comply with the guidelines established by the Swiss authorities for the evaluation of advanced wastewater treatment, **12 indicator substances need to be eliminated by 80% on** average over the whole treatment chain (the bold ones in the table).

<u>These 12 indicator</u> substances were abated by 2-44% during biological treatment (BIO), except benzotriazole ($64 \pm 4\%$).

The average abatement increased to 85 ± 3% when the biological treatment was followed by a low specific ozone dose (0.35 g O_3 /g DOC) and even **up to >94%** when the specific ozone dose was 0.54 g O_3 /g DOC.

Ozonation \rightarrow generation of transformation compounds and oxidation byproducts \rightarrow **potential increment in the ecotoxicity**

An additional post treatment is necessary to eliminate potential ecotoxicological negative effects posed by ozonation transformation products and oxidation byproducts: sand filtration, moving bed, fixed bed, but also GAC

Especially for **ozonation**, an **increase of the BOD**₅/COD ratio (from 0.07 to 0.16) indicates changes in the water matrix with the formation of **smaller and more biodegradable moieties**, which have been **associated to an increased toxicity**.

Different treatment trains tested

Department of

Engineering

Process flow diagram of the WWTP <u>Neugut</u> including the full-scale ozonation reactor and various post-treatments Bourgin et al., 2018 Water Research

Some results

- Caffeine, nicotine & metabolites
- Illicit drugs
- Industrial chemicals (incl. PFCs)
- Corrosion inhibitor
- Food additives
- Personal care products
- Pesticides & biocides
- Pharmaceuticals

Σ concentrations of micropollutants at various WWTP sampling points; (n = 2, 48-h flow proportional samples, dose 0.55 g O_3/g DOC, * Removal with respect to WWTP-INF ** removal with respect to BIO-EFF *** removal with respect to OZO-EFF

Bourgin et al., 2018 Water Research

14

BAC and O_3

WWTP effluent

		•	
		BAC	
Flowrate (L/h)	3.62	0.91	0.37
EBCT (h)	0.33	1.32	3.21
Sulfamethoxazole	-21	88	54
Diclofenac	70	>95	>95
Trimethoprim	86	>95	92
Carbamazepine	44	76	73
Propanolol	92	>95	>95
Erythromycin	70	>95	>95
Furosemide	65	>95	>95
Clarithromycin	79	>95	>95
Sotalol	83	>95	>95
Atenolol	80	>95	94
Caffeine	68	92	NA
4 and 5 methylbenzotriazole	71	90	80
Metoprolol	63	>95	86
Dimetridazole	57	70	69
Mecoprop	45	82	67
Irbesartan	16	91	76
Benzotriazole	24	60	62
2,4-D	60	82	75
DEET	28	89	81
BAM	40	67	60

Removal in BAC filter at three flowrates. Removal in% is shown with a color scale from 0 (red) to >95 (green). NA means not analyzed.

WWTP effluent	¥		¥	_	_	.	-
	BAC		BO₃			O3	
Specific ozone dose (g O₃/g TOC)	0	0.18	0.36	0.55	0.20	0.39	0.59
Absolute ozone dose (mg O₃/L)	0	2.1	4.2	6.4	3.2	6.5	9.7
Sulfamethoxazole	88	>95	>95	>95	79	>95	>95
Diclofenac	>95	>95	>95	>95	79	>95	>95
Trimethoprim	>95	>95	>95	>95	77	>95	>95
Carbamazepine	76	>95	>95	>95	67	>95	>95
Propanolol	>95	>95	>95	>95	74	>95	>95
Erythromycin	>95	>95	>95	>95	80	>95	>95
Furosemide	>95	>95	>95	>95	92	>95	>95
Clarithromycin	>95	>95	>95	>95	72	93	94
Sotalol	>95	>95	>95	>95	81	>95	>95
Atenolol	>95	>95	>95	>95	39	73	92
Caffeine	92	>95	>95	>95	41	66	87
4 and 5 methylbenzotriazole	90	>95	>95	>95	41	76	90
Metoprolol	>95	>95	>95	>95	45	79	94
Dimetridazole	70	87	>95	>95	34	66	84
Mecoprop	82	92	>95	>95	37	69	84
Irbesartan	91	>95	>95	>95	57	80	88
Benzotriazole	60	83	>95	>95	40	71	87
2,4-D	82	91	>95	>95	29	68	81
DEET	89	>95	>95	>95	34	72	84
BAM	67	76	92	>95	28	61	72

Removal in BAC, BAC+O₃ (=BO₃) process (operated at 0.91 L/h, EBCT of 1.32 h) and for O₃ without BAC as a pre-treatment (O₃). Removal in% is shown with a color scale from 0 (red) to >95 (green). TOC concentration before and after BAC filtration were 16.6 and 11.7 mg/L respectively. NA means not analyzed.

Removal of micropollutants and ecotoxicity during combined biological activated carbon and ozone (BO₃) treatment

K. van Gijn¹^a, M.R.H.P. van Dam^a, H.A. de Wilt^b, V. de Wilde^a, H.H.M. Rijnaarts^a, A.A.M. Langenhoff^{a,*}

Risk in the two scenarios BAC+O₃ versus O₃

WWTP effluent 8.4 mg TOC/L \rightarrow

: : :	Feed	:	E	303	Ó3			
Ozone dose (g O3/g TOC) >	0	0	0.18	0.36	0.55	0.20	0.39	0.59
Ozone dose mg O ₃ /L	õ	Õ	1.5	3.04	4.62	1.68	3.23	5.0
Sulfamethoxazole	1.4	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Diclofenac	16.5	0.0	0.0	0.0	0.0	1.4	0.0	0.0
Trimethoprim	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Carbamazepine	22.4	5.0	0.2	0.2	0.2	3.1	0.5	0.2
Propranolol	2.3	0.0	0.0	0.0	0.0	0.3	0.0	0.0
Erythromycin	5.3	0.1	0.0	0.0	0.0	0.5	0.1	0.0
Furosemide	1.5	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Clarithromycine	6.0	0.2	0.1	0.1	0.1	1.0	0.5	0.4
Atenolol	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Caffeine	0.9	0.1	0.0	0.0	0.0	0.4	0.2	0.1
4 and 5 methylbenzotriazole	8.4	0.8	0.2	0.1	0.1	3.1	1.7	1.0
Metoprolol	0.3	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Dimetridazole	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mecoprop	1.2	0.2	0.1	0.0	0.0	0.5	0.3	0.2
Irbesartan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Benzotriazole	0.3	0.1	0.0	0.0	0.0	0.1	0.1	0.0
2,4-D	1.5	0.3	0.1	0.0	0.0	0.7	0.4	0.3
DEET	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BAM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Desphenyl chloridazon	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

RQ

UV and UV/ H_2O_2

Fig. 4. Removal efficiency of the 41 pharmaceuticals detected during UV and UV/H₂O₂ processes for HRT of 5 mir

Fig. 5. Variation of DOC concentration during UV and UV/H₂O₂ processes

Fig. 6. Variation of UV254 during UV and UV/H₂O₂ processes.

Kim et al., 2009

Among 41 PhCs, 29 were not removed effectively in spite of considerable UV dose of **2768 mJ/cm²** during UV process. Therefore, **a good PhC removal can not be expected by UV** process applied for the disinfection of treated water in wastewater treatment plants because UV doses of **40–140 mJ/cm²** are usually used for **water disinfection**.

For UV/ H_2O_2 process, 90% removal efficiency could be accomplished in 39 pharmaceuticals at UV dose of 923 mJ/cm². This means that it is possible to reduce UV energy required for the effective PhCs removal by the combination of H_2O_2 with UV process.

DOC and above all UV254 confirm the different removal level achieved by UV and UV/H_2O_2

Soil microrganisms: bacteria, actinomycetes, fungi and algae

Interactions between soil microbioma and plant on a molecular level.

Bacteria develop in the rhizosphere.

The processes occurring in this region control a range of reactions, regulating terrestrial carbon and other element cycles.

From: https://fruit.wisc.edu/2023/07/18/beneficial-soil-bacteria-role-in-agriculture/

CECs in the soil

Key properties to look at: related to the CEC

- Log K_{ow} (<1 \rightarrow hydrophilic; >4 hydrophobic) gives a rough idea
- Charge (cationic, anionic and zwitterionic)
- DT₅₀ (dissipation time= time needed to degrade 50 % of the CEC initial concentration in cropped soils; e.g. caffeine DT50= 1.5-3 d; Carbamazepine 6.4-693 d, triclosan 18-693 d)

Processes

- 1. Sorption ($\rightarrow K_d$)
- 2. Desorption
- 3. Transformation processes

reducing the CEC concentration available for biodegradation and plant uptake.

Bioavailability of a CEC for plant or microorganisms depends on its chemical form related to the (environmental) conditions.

- Soil properties, such as the Organic Carbon content, can inhibit CEC biodegradation reducing their bioavailability.
- Cation Exchange Capacity, strictly related to the organic substances contents in the soil, increases with prolonged application of reclaimed water (>15 % after 4 years) and influence CEC fate.
- CECs may accumulate:

Dalkmann t al. 2012

CECs in the soil

Soil properties (texture, composition, pH, cation exchange capacity, C, content, nutrient content, EC)

Key properties related to the **soil** to look at:

- Soil characteristics: pH, organic carbon content, humidity, cation exchange capacity, nutrient concentration, electrical conductivity
- Soil type: fine/coarse structure; clay/silt/sand contents
- Fungal mycelial network in the top soil, which favor the distribution of microbes within the soil and thus promote the distribution of bioavailable CEC to remote bacteria
- Hydroponic cultures have the highest bioconcentration factors due to the lack of soil partitioning. Hydroponics= worse case scenario.
- Sand-perlite growing medium exhibits the smallest interaction with contaminants and experimental bioconcentration factors found in crops are similar to those found with hydroponics.

(Banitz et al. 2013)

Environmental conditions

- Rain events (intensity, duration)
- High T, increased wind speed, and low air humidity increase evapotranspiration rates of plants and they increase water and nutrient uptake by plant.

CECs in the soil: irrigation practices

- **Drip irrigation** provides the lowest contaminant intake to crops due to the small volume of water locally distributed;
- **Sprinkling irrigation** can lead to a direct contact between dissolved CECs in RWW and the edible parts of crops.

Dissipation time (to degrade to 50% of the initial concentration): these values can be smaller than in non cropped soil due to the presence of root exudates enhancing the activity of microorganisms in degrading CECs near the rhizosphere.

Factors affecting crop uptake

DE Department of Engineering Ferrara

Highest potential of crop uptake

Crop uptake

Crop uptake depends on

- bioavailability and bioassessibility in soil pore water near the rhizosphere (sorption to soil constituents and transformation by soil organisms reduce bioavailability);
- CEC physicochemical properties
- Soil environment: in the case of low carbon content or sandy/silty soil, a higher potential of crop uptake may occur. Lower in clay or loamy soil
- Evapotranspiration rate of crop plants, determined by climatic and plant specific values (Kc, crop coefficient) is a good indicator of the potential uptake
- Investigations carried out referring to around 100 different crops

Crop uptake: physiology –related parameters

Evapotranspiration rate (EVT) of crop plants, determined by climatic and plant specific values (Kc, crop coefficient) is a **good indicator** of the potential uptake:

• Crops with a **high EVT** and a **high Net Irrigation Requirements NIR** are expected to have a higher potential for CEC uptake:

Crops	ETc	NIR						
	Total ETc	Total NIR						
	(m ³ water/ ha/ year)	(m ³ water/ ha/ year)						
Tree crops								
Almonds	3445	3364						
Bananas	12184	11340						
Citrus & Avocado	8237	76 1 5						
Funda Anna - /l an da mala /	7070	7000						

- Crops grown in greenhouses and perennial crops irrigated with RWW may have a high potential uptake
- Crops growing in autumn or winter requiring less water due to rain events, or with a modest root development should have a lower potential uptake.
- Leafy vegetables may bioaccumulate greater CEC concentrations as the aboveground of the plants are edible.

Fate in the soil

How to monitor the risk in soil, crop, and Engineering humans?

Selection of the most representative CECs

- Frequency of detection (the highest!) = f(use patterns, CEC recalcitrance)
- Environmental concern \rightarrow DT₅₀(> 14 d e.g.), phytotoxicity, PNECsoil,...
- Human health effects \rightarrow Thresholds of toxicological concern (TCC)
- Uptake rate by crops→ bioconcentration factors (RCF, LCF, FCF > 1) ratio between concentration in root and growing medium, leaf and growing medium, fruit and growing medium
- Evapotranspiration rate of the crop plant

Exemple of selection: Verlicchi et al., Selection of indicator contaminants of emerging concern when reusing reclaimed water for irrigation — A proposed methodology, 2023 Stoten

Risk assessment evaluation

 Hazard Quotient HQ =EDI/ADI (HQ>0,1 high risk), evaluated for the mixture of CECs:

$$HQ_{tot} = \Sigma_i HQ_i$$

• Thresholds of toxicological concern TTC (recommended in absence of toxicity data). Based on Cramer classification tree (Cramer et al., 1978)

Verlicchi et al., 2023 Review Verlicchi et al., 2023 Research Article

Structural Features	TTC (µg/day)	TTC (µg/kg-day)
Cramer Class III	90 µg/day	1.5 μg/kg-day
Cramer Class II	540 µg/day	9.0 μg/kg-day
Cramer Class I	1800 µg/day	30 µg/kg-day
Acetylcholinesterae Inhibitors (AChEIs)	18 µg/day	0.3 µg/kg-day
Genotoxic alerts	0.15 µg/day	0.0025 µg/kg-day

Department of

Engineering

Further research

- Selection of representative CEC, including ARB and ARGs (microbial CECs).
- Investigations on soil accumulation and uptake in different crops of organic and microbial CECs analysing specific processes as outlined in Fu et al., 2019 and other overview/discussing papers.
- Validation of predictive models available in the literature
- Evaluation of the effects of prolonged irrigation with reclaimed water in soil quality and crop uptake with regard to the selected CECs
- Environmental risk assessment of a mixture of compounds

Thank you for your attention

It's time for your questions...

paola.verlicchi@unife.it